Isoflurane Preconditioning Promotes the Survival and Migration of Bone Marrow Stromal Cells.

نویسندگان

  • Yu Sun
  • Qi-fang Li
  • Jia Yan
  • Rong Hu
  • Hong Jiang
چکیده

BACKGROUND Preconditioning with the volatile anesthetic isoflurane exerts protective effects in animal models of ischemia. The cytoprotective effects of isoflurane are dependent on the expression of hypoxia inducible factor-1 (HIF-1), a dimeric transcription factor that mediates cellular responses to hypoxia. METHODS We investigated the effect of isoflurane preconditioning on bone marrow stromal cell (BMSC) survival and function. RESULTS Short exposures to low isoflurane concentrations promoted in vitro survival and migration of BMSCs, whereas long exposures and high doses had the opposite effect. At specific doses and times, isoflurane upregulated the expression of HIF-1α and the stromal-derived factor-1 receptor CXCR4, and induced the activation of Akt, similar to hypoxia, and the effect of isoflurane was abrogated by silencing of HIF-1α or inhibition of PI3K/Akt signaling. In vivo experiments showed that isoflurane preconditioning increased the engraftment of BMSCs into the ischemic brain and improved functional recovery in a mouse model of stroke. CONCLUSION Isoflurane preconditioning at specific doses and times improves the survival and function of BMSCs through the upregulation of CXCR4 via a mechanism involving HIF-1α expression and the PI3K/Akt pathway, suggesting that anesthetic preconditioning could be developed as a strategy to improve the efficiency of cell therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transplanting P75-Suppressed Bone Marrow Stromal Cells Promotes Functional Behavior in a Rat Model of Spinal Cord Injury

Background: Bone marrow stromal cells (BMSC) have been successfully employed for movement deficit recovery in spinal cord injury (SCI) rat models. One of the unsettled problems in cell transplantation is the relative high proportion of cell death, specifically after neural differentiation. According to our previous studies, p75 receptor, known as the death receptor, is only expressed in BMSC in...

متن کامل

Multiple Myeloma Bone Marrow Mesenchymal Stromal Cells Inhibit CD8+ T Cell Function in a Process that May Implicate Fibroblast Activation Protein α

Background: Multiple myeloma (MM) is a malignant plasma cell proliferative disorder with limited immunotherapy treatment because of T cell dysfunction. Objective: To investigate the immunomodulatory function of bone marrow mesenchymal stromal cells (MM-BMSCs) on CD8+ T cells. Methods: Proliferation and cytotoxicity were detected by c...

متن کامل

Trahalose Activates Autophagy and Prevents Hydrogen Peroxide-Induced Apoptosis in the Bone Marrow Stromal Cells

Bone marrow stromal stem cells (BMSCs) play a significant role in cell therapy. These cells quickly die after transplantation to the affected area due to oxidative stress. The natural disaccharide, trehalose which can be known as autophagy inducer. The present study aimed to investigate the role of trehalose in preventing BMSCs from oxidative stress caused by H2O2. BMSCs were isolated from the ...

متن کامل

Trahalose Activates Autophagy and Prevents Hydrogen Peroxide-Induced Apoptosis in the Bone Marrow Stromal Cells

Bone marrow stromal stem cells (BMSCs) play a significant role in cell therapy. These cells quickly die after transplantation to the affected area due to oxidative stress. The natural disaccharide, trehalose which can be known as autophagy inducer. The present study aimed to investigate the role of trehalose in preventing BMSCs from oxidative stress caused by H2O2. BMSCs were isolated from the ...

متن کامل

Bone marrow stromal cells and their application in neural injuries

Background: This article reviews experimental and clinical studies in which neural injuries repaired with bone marrow stromal cells. History: Bone marrow contains two kinds of stem cells: hematopoietic and nonhematopoietic (stromal) stem cell. In vitro studies indicate that bone marrow stromal cells have the capacity of differentiation into other cells (such as neural cell) under treatment wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology

دوره 36 4  شماره 

صفحات  -

تاریخ انتشار 2015